Periodic Solutions of a Nonlinear Evolution Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-periodic solutions for nonlinear evolution equations

*Correspondence: [email protected] 1Fundamental Department, Aviation University of Air Force, Changchun, 130022, People’s Republic of China Full list of author information is available at the end of the article Abstract In this paper, we use the homotopy method to establish the existence and uniqueness of anti-periodic solutions for the nonlinear anti-periodic problem { ẋ + A(t, x) + Bx = f (t) ...

متن کامل

Periodic Solutions for Nonlinear Evolution Equations in a Banach Space

We prove an existence result for 7"-periodic mild solutions to nonlinear evolution equations of the form u(t) + Au(t) BF(t, u(t)) , t€R+. y Here (X, \\-\\) is a real Banach space, A: D(A) C X —> 2 is an operator with A — a! m-accretive for some a > 0 and such that -A. generates a compact semigroup, while F: R+ x D(A) —► X is a Carathéodory mapping which is T-periodic with respect to its first a...

متن کامل

Recurrent Dimensions of Quasi-periodic Solutions for Nonlinear Evolution Equations

In this paper we introduce recurrent dimensions of discrete dynamical systems and we give upper and lower bounds of the recurrent dimensions of the quasi-periodic orbits. We show that these bounds have different values according to the algebraic properties of the frequency and we investigate these dimensions of quasi-periodic trajectories given by solutions of a nonlinear PDE.

متن کامل

New periodic and soliton solutions of nonlinear evolution equations

In this paper, the tanh and sine–cosine methods are used to construct exact periodic and soliton solutions of nonlinear evolution equations arising in mathematical physics. Many new families of exact travelling wave solutions of the generalized Hirota–Satsuma coupled KdV system, generalized-Zakharov equations and (2 + 1)-dimensional Broer–Kaup– Kupershmidt system are successfully obtained. The ...

متن کامل

Exact solutions of (3 +1)-dimensional nonlinear evolution equations

In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 2002

ISSN: 0862-7940,1572-9109

DOI: 10.1023/a:1021757823679